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a b s t r a c t

Laminar-turbulent transition of hypersonic boundary layers can be affected significantly by
the existence of surface roughness. Currently many important mechanisms of roughness-
induced transition are not well understood. In recent years, direct numerical simulation
(DNS) has been extensively applied for investigating instability and transition mechanisms
of hypersonic boundary layers. Most of the past DNS studies, however, have been based on
body-fitted grids for smooth surfaces without roughness. Due to complex geometry of
embedded roughness, the use of body-fitted grids can be very difficult for flow with arbi-
trary surface roughness. In this paper, we present a new high-order cut-cell method to
overcome the natural complexities in grid generation around arbitrary surface of rough-
ness. The new method combines a non-uniform-grid finite-difference method for discrete
grid points near the solid boundary and a shock-fitting method for the treatment of the
bow shock. The non-uniform-grid finite-difference formulas are expressed in a general
explicit form so that they can be applied to different multi-dimensional problems without
any modification. The computational accuracy of new algorithms of up to O(h4) are tested
on several one- and two-dimensional elliptic equations in irregular domains. In addition,
the new method is applied to the simulation of the receptivity process of a Mach 5.92 flow
over a flat plate under the combined effect of an isolated surface roughness element and
surface blow and suction. A good agreement is found between the unsteady flow results
and those obtained by a Linear Stability Theory (LST).

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The understanding of physical mechanisms of roughness induced boundary-layer transition is critical to the development
of hypersonic vehicles [1]. Transition can have a first-order impact on the lift and drag, stability and control, and heat transfer
properties of the vehicles [2]. For example, roughness induced transition is an important consideration in the design of ther-
mal protection systems (TPS) of hypersonic vehicles [3,4]. Fig. 1 shows an example of surface roughness on test models for
hypersonic boundary layer transition. For a reentry vehicle entering earth’s atmosphere, it initially experiences a heating
environment associated with a laminar boundary layer. As the vehicle altitude decreases, the vehicle surface becomes rough-
er and the boundary layer becomes turbulent. The transition from a laminar boundary layer to a turbulent one leads to the
increase of surface heating rates by a factor of five or more. Thus the ability to understand and predict the physics of rough-
ness induced transition plays an essential role in the design of TPS for reentry vehicles. Currently, surface roughness, espe-
cially arbitrary roughness induced laminar-turbulent transition in hypersonic boundary layers is still poorly understood due
to the limitation in experimental facilities and numerical methods [5].
. All rights reserved.
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Fig. 1. An example surface roughness on test models for hypersonic boundary layer transition: (a) isolated roughness, (b) distributed roughness [6].
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Direct numerical simulation has become an effective research tool for studying hypersonic boundary layer receptivity,
stability and transition by numerically solving the time-dependent three-dimensional Navier–Stokes equations for the tem-
porally or spatially evolving instability waves. It is necessary to use high-order numerical methods for the simulation in or-
der to resolve the wide range of length and time scales of the complex wave fields in hypersonic boundary layers. Hence,
high-order finite-difference schemes have recently received much attention for the direct numerical simulations of transi-
tional and turbulent flows [7–12]. Zhong [13] presented a fifth-order upwind finite difference shock fitting method for
the direct numerical simulation of hypersonic flows with a strong bow shock and with stiff source terms. The use of the
shock-fitting method makes it possible to accurately compute the shock-disturbance interactions, and the development of
instability waves in the boundary layers. The fifth-order shock-fitting schemes were derived on a uniform grid. For a
curvilinear stretched grid, typically used in simulations of viscous flow in a boundary layer, the physical coordinates with
a non-uniform grid are first transformed to a uniform grid in the computational coordinates. The high-order schemes are
subsequently applied to the transformed equations in a uniform grid. The fifth-order shock-fitting scheme was used for
numerical studies of the receptivity of two-dimensional Mach 15 flows over a blunt leading edge [14].

Most of the DNS methods, however, have been developed for smooth surfaces computed by body-fitted grids. Such meth-
ods may not be able to compute flow with surface roughness elements similar to those shown in Fig. 1. The main obstacle is
the difficulty to generate smooth body-fitted grids around the surface of arbitrary roughness. One approach for overcoming
the difficulty in grid generation is to use a Cartesian grid method, which is easy in grid generation. Cartesian grid methods
can also take full advantage of fast computer architectures such as parallel computers and can serve as a very flexible method
for simulating flow around complex geometries. On the other hand, in a Cartesian grid method, the grid lines are not aligned
with the body surface. As a result, special treatment is needed to compute the flow equations in local regions adjacent to the
solid surface.

Various Cartesian grid methods have been developed and used to solve problems with arbitrary geometry [15–19]. Peskin
developed the immersed boundary method (IBM) [19] for the simulation of blood flow in hearts. The method is based on
Cartesian grids where the surface of solid membrane is represented by a discrete delta function. This delta function is added
into the Navier–Stokes equations to reflect the immersed boundary between the two phase flows. The resulting equations
are discretized by a standard finite difference method in a fixed Cartesian grid system. Since its introduction, the IBM meth-
ods have been applied to many different fluid flow problems, including flow interaction with solid surface. For example,
Marxen and Iaccarino [20] applied the IBM to simulate the effects of a localized two-dimensional roughness element on
the disturbance amplification in a hypersonic boundary layer. However, since the immersed boundary method uses the dis-
crete delta function approach, it leads to a smeared interface with a thickness in an order of a mesh width. The immersed
boundary method is locally first-order accurate at the interface, which may not be accurate enough for the DNS of hypersonic
boundary layer transition problems.

In contrast to the immersed boundary method with smeared interfaces, ‘‘sharp interface” Cartesian grid methods, which
maintain second-order accuracy at the interfaces, have been developed [16,21]. Udaykumar et al. [16,17] used the finite-vol-
ume methodology to solve the incompressible Navier–Stokes equations for flow interacting with moving bodies. The method
is based on a fixed Cartesian mesh where the solid boundaries can move across the grid lines. The flow equations are dis-
cretized by an overall second-order-accurate finite-volume technique. The interface is represented as a sharp boundary be-
tween the fluid and solid phases. A one-sided bilinear interpolation is applied to calculate the accurate flow conditions in the
sharp irregular boundary. Johansen, McCorquodale and Colella [21,22] developed a similar sharp-interface Cartesian grid
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method for solving two-dimensional Poisson and heat equations on irregular domains. Their method was based on finite-
volume formulation, with imbedded irregular grid cells on the boundary. The irregular grid cells were treated by conserva-
tive differencing of second-order accurate fluxes on each cell volume. The method is second-order accurate for a problem
with irregular boundary.

Fedkiw and co-workers [15,23] developed a high-order accurate finite-difference method to solve equations in a uniform
Cartesian grid with an irregular domain. Their method is termed as ghost fluid method, and is based on the finite difference
method on uniform grids. For the boundary points, they used the same stencil in finite difference discretization as the inte-
rior grids points, where the coefficients are computed by using high-order extrapolation in ghost cells outside the fluid do-
main. For 2-D or higher dimensional problems, they conducted the extrapolation in either a dimension by dimension manor,
or in the normal direction directly, depending on the specific problem. Gibou and Fedkiw then applied their ghost fluid meth-
od to the heat equation and Stefan problem on irregular domains. To avoid the small cell problem, they showed that a good
rule of thumb for removing small cell restriction is that the interpolation should be shift to be centered one grid points left or
right if the interpolation stencil involves point considered to be relatively close to the boundary. The specific criterion on the
smallness of the small cell is not stated in their paper. Gibou and Fedkiw [23] improved accuracy of the ghost fluid method to
fourth-order accuracy for both the Laplace equation and the heat equation with Dirichlet boundary conditions on irregular
domains. Finite difference discretization was used to solve the equations in an irregular domain. The sharp interface Carte-
sian grid method has also been termed cut-cell method in handling irregular grid cells along the boundary [24].

For multi-phase flows with moving interfaces, an immersed interface method was developed and has been widely used
[25–35]. For an immersed interface method, a Cartesian grid is often used where a sharp interface moves freely across the
fixed grid lines. This method can achieve a second- or higher-order global accuracy by incorporating jump conditions into the
finite difference formulas for variables and their derivatives at the interface. This method was first developed by Leveque and
Li [36] to solve elliptic equations with discontinuous coefficients and singular sources. The original method was second order
in the interior of the domain and locally first order at the interface. Leveque and Li [37] subsequently extended the method to
the Stokes flow with elastic boundaries or surface tension. Wiegmann and Bube [28,29] developed an explicit jump im-
mersed interface method for special cases where the explicit jump conditions of variables and their high-order derivatives
are known. This method can only achieve arbitrary high-order accuracy if the corresponding high-order derivatives of jump
conditions can be analytically derived. Zhong [35] developed a new high-order immersed interface method which does not
require second and higher derivatives of jump conditions. The main idea was to use a wider grid stencil across the interface
instead of taking higher derivatives of jump conditions to achieve high-order accuracy for finite difference formulas at the
interface.

For sharp-interface Cartesian grid methods, a ‘‘small cell problem” [38] of numerical instability would arise when finite-
difference or finite-volume methods are applied to relatively small-sized irregular grid cells created by a sharp-interface
Cartesian grid method. For a time-dependent problem, the small cell problem will significantly restrict the size of times steps
in temporal integration methods. Many methods have been proposed to resolve the small cell problem. Berger and Leveque
[38] used a rotating box method. Johansen and Colella [21] used a flux-redistribution procedure. Quirk [39] and Udaykumar
et al. [17] employed a cell merging method to avoid small cells in order to maintain numerical stability.

Gibou and Fedkiw [23] presented a stable fourth-order finite difference method for solving the Laplace equation on an
irregular domain. They showed that a good rule of thumb for removing small cell restriction is that the interpolation should
be shift to be centered one grid points left or right if the interpolation stencil involves point considered to be relatively close
to the boundary.

Due to the difficulty in grid generation for numerical simulation of high-speed flow with arbitrary surface roughness ele-
ments, it is advantageous to use a fixed-grid cut-cell method to compute such flow. The grid can be a smooth curvilinear
body-fitted one along a baseline smooth surface without the roughness. The actual surface with roughness will cut across
the grid lines, which create irregular grid points. Most of the previous Cartesian-grid cut-cell (or sharp-interface) methods
with different boundary treatments, however, are only first- or second-order accurate at the interface. Low order schemes
are adequate for most aerodynamic calculations, but they are not accurate enough for DNS of transition studies, where short
wave-length shock/disturbance interactions need to be resolved with high accuracy [13]. There are only a few DNS studies of
hypersonic boundary layers with roughness [20,40,41]. All of these studies used body-fitted grids. With the introduction of
roughness, it is expected that the relative low accuracy at the interface may not be sufficient for numerically simulating lam-
inar-turbulent boundary-layer transition involving surface roughness. In this paper, we propose a high-order cut-cell meth-
od up to 4th order based on finite difference method for the compressible Navier–Stokes equations. The generated grids are
non-uniformly distributed near the boundary. Therefore, the numerical treatment in the interior grids points is similar to the
ghost fluid method, but it is different in the boundary points. The coefficients are computed directly on the non-uniformly
distributed stencil by using one-side discretization with explicit formula. For 2-D or higher dimensional problems, the cut-
cell methods is conducted in a dimension by dimension manor. The new method is applied to solve the compressible Navier–
Stokes equation in irregular domain. The shock interface is computed by a high-order shock fitting method. To overcome the
small cell problem, we adopt a ‘‘drop point” approach. A critical ratio, defined as the minimum distance to the boundary, is
used to classify the ‘‘drop point”. The computational accuracy of our third and fourth order accurate cut-cell methods is
tested for the computations of Poisson and hyperbolic equation with Dirichlet boundary conditions in irregular domains.
We then test a third-order accurate cut-cell method for the two-dimensional Navier–Stokes equations. The new scheme
is used to simulate steady and unsteady hypersonic boundary layer flows over a flat plate with an isolated surface roughness
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Fig. 2. An example hypersonic flow over flat plate with surface roughness induced boundary layer transition.
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element (Fig. 2). The bow shock generated from the leading edge of the flat plate is treated as a computational boundary and
discretized based on Zhong’s [13] high-order finite-difference shock-fitting method. The unsteady flow over flat plate is ex-
cited by a narrow blowing and suction slot composed of 15 different frequencies mounted near the leading edge. Several
multi-dimensional cases are tested to demonstrate the order of accuracy for these numerical methods.

The cut-cell method is inspired by the ghost fluid method of Gibou and Fedkiw [23] and several aspects of the methods
are similar. On the other hand, the method is novel in several aspects of the method and in the complexity of the equations
and problems which our methods are developed for and applied to. First, the new high-order cut-cell method is developed
for much more complicated fluid flow problems of hypersonic viscous flow with a bow shock and surface roughness ele-
ments. The governing equations are full compressible Navier–Stokes equations with a shock wave, which is treated by a fit-
ting method. On the other hand, Gibou and Fedkiw’s method was developed for the linear Laplace and heat equations in a
uniform Cartesian grid. Second, the numerical treatment near the boundary is different for these two methods. Non-uni-
formly distributed stencil is used in the cut-cell method, and the coefficients are computed directly by using one-side dis-
cretization with explicit formula. On the other hand, Gibou and Fedkiw use uniform grids in the computational domain, and
obtain the coefficients by using extrapolation (i.e., the ghost fluid method). In addition, for 2-D and 3-D problems, Gibou and
Fedkiw update the values in the ghost cell by using extrapolation in normal direction to the interface. Therefore, in their
method the grids stencil in one direction may include the grids points in other directions. But our cut-cell method involves
grids points in the finite difference direction only.

2. Governing equations

For direct numerical simulation of hypersonic boundary layer transition, the governing equations are the two-dimen-
sional Navier–Stokes equations. We assume that we are dealing with Newtonian fluids with the perfect gas assumption
and isothermal or adiabatic wall conditions. The governing equations can be written in the following conservation-law form
in the Cartesian coordinates,
@U
@t
þ @Fj

@xj
þ @Fv j

@xj
¼ 0; ð1Þ
where U, Fj and Fvj are the vectors of flow variables, convective flux, and viscous flux in the jth spatial direction respectively,
i.e.,
U ¼ fq;qu1;qu2; eg; ð2Þ

Fj ¼

quj

qu1uj þ pd1j

qu2uj þ pd1j

ðeþ pÞuj

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
; ð3Þ

Fvj ¼

0

s1j

s2j

sjkuk � qj

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
: ð4Þ
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In this paper, only perfect-gas hypersonic flow is considered, i.e.,
p ¼ qRT; ð5Þ

e ¼ q CvT þ 1
2

ukuk

� �
; ð6Þ

sij ¼ l @ui

@xj
þ @uj

@xi

� �
þ dij k

@uk

@xk
; ð7Þ

qj ¼ �k
@T
@xj

; ð8Þ
where R is the gas constant. The specific heat Cv is assumed to be constant with a given ratio of specific heats c. The viscosity
coefficient l can be calculated by Sutherland’s law in the form:
l ¼ lr
T
T0

� �3=2 T0 þ Ts

T þ Ts
; ð9Þ
where, for air, lr = 1.7894 � 10�5 Ns/m2, T0 = 288.0 K, Ts = 110.33 K and k is assumed to be�2/3l. The heat conductivity coef-
ficient k can be computed through a constant Prantl number.

3. A high-order cut-cell method

Our high-order cut-cell method is presented in this section for the numerical simulation of hypersonic boundary-layer
transition with arbitrary surface roughness. The traditional numerical methods of choice for the DNS of transitional and tur-
bulent flows have been spectral methods because of their high accuracies [42–44]. But the applications of spectral methods
have been limited to flows in simple domains. Finite-difference methods have recently received much attention for the DNS
of transitional and turbulent flows, especially compressible flows [10,45–48], because they can be easily applied to complex
geometries. High-order schemes are required because traditional second-order schemes do not provide adequate accuracy
level for the direct numerical simulation. Most high-order finite-difference methods used in direct numerical simulation are
central difference schemes [10,48] which introduce only phase errors but no dissipative errors in numerical solutions. The
shortfall of central schemes is that they are often not robust enough in convection dominated hypersonic flow simulations.
On the other hand, Rai et al. [45] show that upwind-bias schemes are very robust in hypersonic flow simulation even when
they are made high-order accurate. They use a spatially fifth-order upwind finite-difference scheme in an upwind-bias sten-
cil to compute the Navier–Stokes equations. The numerical dissipation in the upwind-bias schemes is enough to control the
aliasing errors and could maintain the overall stability of the method.

The other issue that needs to be considered in DNS of hypersonic flow over blunt bodies is the treatment of shock waves.
High-order linear schemes cannot be used for grid points across the bow shock fronts with steep gradients because spurious
numerical oscillations are generated at the shocks. Many high-resolution shock capturing schemes, such as the WENO
scheme [49], have been developed to capture shock waves as part of the numerical solutions without numerical oscillations.
These shock capturing schemes are adequate for most aerodynamic calculations, but they are not accurate enough for DNS
studies, where short wave-length shock/disturbance interactions need to be resolved with high accuracy. For DNS of hyper-
sonic boundary layers, the bow shocks can be treated as a computational boundary using the shock-fitting method [50]. The
use of the shock-fitting method makes it possible to apply high-order linear schemes for spatial discretization of the flow
equations behind the bow shocks. Hussaini et al. [50] used the shock-fitting spectral method to simulate shock/turbulent
interaction. To satisfy the accuracy requirement for capturing small disturbances inside the boundary layer for transition
simulation, a high-order shock-fitting method is needed in order to compute shock interaction with high accuracy. Therefore,
in this paper, our high-order cut-cell method is coupled with a fifth-order shock-fitting and upwind finite-difference scheme
developed by Zhong [13] for computations of flow fields bounded by the bow shock and wall surface.

3.1. Computational grids and classification of grid points

A schematic of a computational domain and a cut-cell grid in roughness induced hypersonic boundary layer transition is
shown in Fig. 3. This figure shows a typical hypersonic flow over a blunt body, where a bow shock is created by the super-
sonic freestream. In this paper, a high-order shock-fitting method is used to track the movement of the bow shock which is
treated as the upper boundary of the computational domain. The computational grid for a shock fitting formulation is
bounded between the bow shock above and the blunt body below.

The cut-cell grid is a smooth curvilinear grid fitted to the baseline body shape without the roughness. As a result, the
roughness surface cuts across the grid lines. The roughness surface, C, is represented by surface equation in the following
form,
C : f ðx; yÞ ¼ 0: ð10Þ
For a problem concerning practical arbitrary roughness in hypersonic vehicle surface, it is likely that there is not an analytical
equation applicable to represent the shape of the roughness element. In this case, a set of n discrete coordinate points
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{(x1,y1), (x2,y2), . . . , (xn,yn)} along the physical roughness surface are used to represent the surface. With these roughness data,
we can reconstruct the roughness surface for simulation by using a high-order piecewise polynomial interpolation.

Both the governing equation (1) and the roughness equation (10) in the physical domain are transformed into a Cartesian
computational domain bounded by bow shock and flat plate boundary. Under the computational coordinate system, the
body fitted grids are represented by a curvilinear three-dimensional coordinates (n,g,s) along the grid lines. The unsteady
movement of the bow shock is treated as the computational upper boundary located at g = gmax, which is time dependent.
The other grid line n = const remains stationary during computations. The coordinate transformation is defined by:
n ¼ nðx; yÞ
g ¼ gðx; y; tÞ
s ¼ t

8><>: $
x ¼ xðn;g; sÞ
y ¼ yðn;g; sÞ
t ¼ s

8><>: ð11Þ
where (x,y, t) are the physical coordinates defined under Cartesian coordinate system.
Substituting Eq. (11) into the governing equation (1), we obtain a system of transformed governing equations in the com-

putational domain (n,g,s) as
1
J
@U
@s
þ @E0

@n
þ @F 0

@g
þ @E0v
@n
þ @F 0v
@g
þ U

@ð1=JÞ
@s

¼ 0 ð12Þ
The transformed fluxes of the equation above are:
E0 ¼ F1nx þ F2ny þ F3nz

J
ð13Þ

F 0 ¼
F1gx þ F2gy þ F3gz þ Ugt

J
ð14Þ

E0v ¼
Fv1nx þ Fv2ny þ Fv3nz

J
ð15Þ

F 0v ¼
Fv1gx þ Fv2gy þ Fv3gz

J
ð16Þ
where nx, ny, gx, gy are transformation metrics, and J is Jacobean matrix of coordinate transformation defined by
J ¼ @ðn;gÞ
@ðx; yÞ ð17Þ
In addition to the transformation of the governing equations, the equation for the surface roughness is also transformed into
the computational domain and can be represented as
f ðnðx; yÞ;gðx; y; tÞÞ ¼ 0 ð18Þ
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The grids transformation metrics and the Jacobean matrix J can be obtained either by analytical formulas of the coordinate
transformation or by numerical approximation.

With the coordinate transformation, a set of uniformly distributed Cartesian grids can be generated in the computational
domain where the grid distribution in the physical domain is not uniformly distributed. Because smooth body-fitted grids
are generated in the regular computational domain without the roughness as shown in Fig. 3(b), some of the Cartesian grid
cells may be cut by the roughness boundary, which leads to irregular Cartesian grid cells.

In the current high-order cut-cell finite-difference method, four different types of grid points are defined according to
their relative locations with respective to the roughness surface. Different numerical algorithms are implemented for differ-
ent types of points. The four types of points, as shown in Fig. 4, are defined as:

� Boundary points: The points created by the intersection of roughness interface C and grid lines are boundary points.
They are not part of the original Cartesian grid, and they are used in finite difference formulas for grid points adjacent
to the roughness surface.
� Irregular points: For those points located close enough to the roughness boundary C that their finite difference stencils

contain a boundary point, they are defined as irregular points. In the finite difference approximation involving an irreg-
ular point, local grid spacing becomes non-uniform because of the inclusion of a boundary point in the stencil.
� Dropped points: If a grid point is adjacent to a boundary point along a grid line with a distance smaller than a pre-spec-

ified critical ratio H in the n or g direction, it is defined as a dropped point along that direction. A dropped point is
removed from the grid stencil in the formulation of a local finite difference approximation in the corresponding direction.
It should be noted that a grid point can be a drop point in one direction, but a regular point in another direction. Therefore,
dropped points are removed in the ‘‘dropped direction” only. The same points may be included in finite difference stencils
in the other directions if these points are not defined as ‘‘dropped”. The value of non-dimensional critical ratio H is an
adjustable parameter. In the cases of third- and fourth-order methods, H is selected to be 0.5 and 1.0 respectively. All
of the points on the solid side of the computational domain are defined as dropped points as well. They do not participate
in any numerical calculation.
� Regular points: All other grid points produced by the intersection of grid lines themselves are defined as regular points.

Since they are relatively far away from boundary points, a standard finite difference approach in a uniform grid can be
applied.

3.2. Finite-difference algorithms for different types of grid points

The derivatives of the flux terms in Eq. (12) are discretized by different methods for the four different types of grid points.
The flux terms in regular points are computed by the standard upwind finite difference scheme introduced in next section.
To calculate the flux in irregular points, we use a high-order non-uniform-grid finite difference method, the stencil of which
consists of regular, irregular and boundary points. The dropped points shown in Fig. 4 are not included in non-uniform or
uniform grid stencils for computing flux terms in a ‘‘dropped” direction. The main purpose of defining a dropped point is
to avoid the small cell problem introduced in Section 1. The removal of drop points from finite difference formulas ensures
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that the distance between two adjacent grid points in a finite-difference stencil is large enough in order to prevent from the
deterioration of corresponding high-order method for computing the hyperbolic part of Eq. (12). Based on the different grid
classifications in the computational domain, the details of the different discretization methods for the four types of points are
described as follows.
3.2.1. Regular points and shock-fitting methods
Since regular points are not affected by the presence of roughness boundary, in this paper, regular high-order upwind

schemes of Zhong [13] are used for the discretization of the governing equations for these points. In addition, the bow shock
shown in Fig. 3 is treated by a high-order shock-fitting approach. The finite difference methods and formulas used for the
regular points and the bow shock are briefly described here.

In the discretization of the Navier–Stokes equations (Eq. (12)) at a regular point, spatial derivatives in the streamwise (n)
and wall-normal (g) directions are discretized by fifth-order finite difference schemes. In a shock fitting scheme, the shock
front is represented by a shock height function, H = H(n,s), which is defined as the distance along a wall normal grid line
between the wall surface and the shock (Fig. 3). Function H is not known in advance, and it is governed by two additional
equations of shock velocity and acceleration. The flow variables for grid points immediately behind the shock are determined
by the Rankine–Hugoniot relations across the shock and a characteristic compatibility equation behind the shock. From
these two equations, the velocity and acceleration equations of the shock front can be obtained as:
@H
@s ¼ Hs
@Hs
@s ¼ Hss n;Us;

@Us
@s ;H;Hs;U1; @U1

@s

� �(
ð19Þ
where Hss n;Us;
@Us
@s ;H;Hs;U1; @U1

@s

� �
is a relation determined by flow conditions and their time derivatives on both sides of the

shock, subscripts s and 1 represent flow variable at the shock on the high-pressure and freestream sides of the shock. In a
time marching computation, an initial shock and flow field behind the shock is given. As the computations progress in time,
the shock shape as well as the flow variables in the physical domain are updated in each time step according to a time step
scheme to solving Eqs. (12) and (19). More details of the derivation of the shock fitting formulas and numerical methods can
be found in Zhong [13].

The transformed equation (12) is discretized by high-order finite difference methods, two sets of difference schemes are
employed to calculate viscous and inviscid flux terms separately. For the inviscid flux terms, upwind schemes of up to fifth-
order combined with a local Lax–Friedrichs (LLF) scheme are used, while central schemes of up to sixth-order are used to
discretize the viscous flux derivatives. Specifically, an inviscid flux term F0 in Eq. (12) can be divided into two parts with pure
negative and positive eigenvalues as
F 0 ¼ F 0þ þ F 0� ð20Þ
where
F 0� ¼ 1
2 ðF

0 � kUÞ
F 0þ ¼ 1

2 ðF
0 þ kUÞ

(
ð21Þ
The parameter k is chosen as a sufficient large so that F0� and F0+contain only pure negative and positive eigenvalues, respec-
tively. The specific form of k used in this paper is:
k ¼ jrgj
J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðecÞ2 þ u02

q
þ c

� �
ð22Þ
where c is the local speed of sound, e is a small dimensionless parameter which introduce smoothness of the flux splitting,
and u0 can be calculated by
u0 ¼
gxuþ gyv þ gt

rgj j ð23Þ
Since F0� and F0+contains only negative and positive eigenvalues respectively, a fifth-order explicit upwind scheme is used to
discretize their derivatives in order to improve the overall computational stability. A fifth-order finite difference formula for
the first-order derivative of F0+can be written as
@F 0þ

@n
¼ 1

Dh

X3

k¼�3

aiþkF 0þiþk �
a
6!

@F 0þ

@n

� �6

i
þ � � � ð24Þ
where Dh is the size of spatial grids. The coefficients of a seven-point stencil can be calculated by using a Taylor expansion as
follows:
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ai ¼ 1
60 � 5

3 a
� �

ai�1 ¼ 1
60 �45þ 5

4 a
� �

ai�2 ¼ 1
60 �9� 1

2 a
� �

ai�3 ¼ 1
60 �1þ 1

12 a
� �

8>>><>>>: ð25Þ
The parameter a is a free parameter. When a < 0, Eq. (24) represents a fifth-order upwind schemes used for the inviscid flux
term F0+. The specific value of a is chosen based on a stability analysis for the high-order finite difference method in [13]. On
the other hand, when a = 0, the scheme is a sixth-order central difference scheme, which is used to discretize the viscous
terms.

Combined with finite difference treatments for the other types of grid points, the spatial discretizations of Eqs. (12) and
(19) lead to a system of ordinary differential equations for flow variables, shock velocity and shock acceleration. For steady
and unsteady flow problems, a Runge–Kutta scheme is used to discretize the system of equations.

3.2.2. Irregular points
Contrary to the standard fifth-order finite-difference schemes used for regular points, special treatment is needed in the

discretization of the governing equations for the irregular points because boundary points are included into the finite differ-
ence stencil. Fig. 5 shows a schematic of a grid stencil for irregular points near the boundary. In this figure, grid points n2 and
n3 are irregular points, n1 is a boundary point, while the grid point between n1 and n2 is a dropped point because it is too close
the boundary point. The dropped point is removed from the stencil for the irregular point schemes. The rest of the grid points
are regular points. For example, for a local third-order finite-difference approximation at the irregular point n2, the grid sten-
cil consists of the following five grid points: n1,n2, . . . ,n5. The grid spacing between the points involved are not uniform
because
r ¼ h
Dh

– 1 ð26Þ
where h is the spacing between n1 and n2, and Dh is the uniform grid spacing of the regular grid. Therefore, a non-uniform-
grid finite difference schemes are needed for irregular points.

It is assumed that p is the local order of accuracy in boundary of the simulation. In order to maintain a (p + 1)th order
global accuracy for the discretization of both the inviscid and viscous flux terms, all local non-uniform schemes for irregular
points need to be at least pth order accuracy. In our construction of high-order cut-cell scheme, if a grid stencil with a num-
ber of q grids is used for discretizing regular points near the boundary in each direction of the computational domain, there
are bq/2c irregular points near a boundary surface. Fig. 5 shows the case of a third-order scheme with q = 5, where there are
two irregular points n2 and n3. We denote the collection of all irregular points near this boundary in one direction as set Xn

p,
where the superscript represents the direction of the stencil and the subscript represents the local order of schemes at this
point.

As a general convention, the boundary point is labeled as n1, the irregular points are labeled as n2,n3, . . . ,nbq/2c+1 sequen-
tially in the order of their distances from the boundary point. A special case with p = 3 and q = 5 is shown in Fig. 5. There may
or may not be a drop point in the stencil for an irregular point depending on the spacing between the boundary point and its
closet regular grid point. As discussed earlier in this paper, if the non-dimensionalized grid spacing between the dropped
point � and the boundary point s is less than a pre-described critical ratio H, this dropped point is removed from the grid
stencil in corresponding direction. Otherwise, there is no dropped point in the stencil.

3.2.2.1. Finite difference formulas for viscous flux terms in irregular points. The discretization of viscous term Fv for an irregular
point involves the calculations of second order derivatives since Fv contains gradient terms, such as r~u and rT. Under the
coordinate transformation of Eq. (11), r~u and rT can be expressed as derivatives with respect to coordinates in the com-
putational domain (n,g,1,s). A two-step algorithm is employed for the computations of viscous fluxes. First, the gradient of
velocity and temperaturer~u and rT is computed at each grid point. Using these results, the values of flux vector Fv is eval-
uated at all grid points. Second, the derivatives of Fv are computed by a finite difference scheme. Since the computations in
both steps involve only calculations of first-order derivatives, the same high-order finite-difference schemes are used at each
step. In order to do this, the first derivative has to be computed at the boundary points. For boundary points with regular
o
θΔh

σ = θ/Δh
Fluids Solids

ξ1
ξ2ξ3ξ4ξ5

Interface

⊗
<Θ

• • • ••

A schematic of a grid stencil for an irregular point with p = 3, q = 5 and Xn
3 ¼ fn2; n3g; h is non-uniform grid spacing after removing a dropped point,

e normal grid spacing, � represents the dropped point, s represents the boundary point, and � represents irregular and regular points.
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finite-difference stencil, the first-derivative can be calculated by using one-side finite-difference scheme, e.g. for 4th order
simulation:
ðuxÞ1 ¼
4u2 � 6u3 þ 4u4 þ u5

Dh
ð27Þ
For boundary points with irregular finite-difference stencil, the first-derivative can be evaluated by using non-uniform one-
side finite-difference scheme. The derivation details can follow the following steps.

The general formulation of a non-uniform-grid finite-difference scheme for computing the viscous terms for an irregular
point ni of Xn

p can be written in the following form:
@F 0v
@n

� �
i
¼ 1

Dh

Xq

k¼1

ai;kðrÞF 0v ;k �
CðDhÞq�1

q!

@F 0v
@n

� �q�1

i
for ni 2 Xn

p where i ¼ 2;3; . . . ; q=2b c þ 1 ð28Þ
The subscripts of coefficient ai,k stand for the kth coefficient for the ith irregular point as defined for the case of p = 3 and q = 5
(Fig. 5). The coefficient ai,k is function of r, which is defined in Eq. (26), and C is a constant.

The coefficients of non-uniform-grid finite-difference equation (Eq. (28)) for every ith irregular grid point in set Xn
p can be

derived either by a Taylor series expansion, or by taking a derivative of a polynomial interpolated through the non-uniform
stencil. We use polynomial interpolation in this paper. Specifically, for each irregular point, the Lagrange interpolation poly-
nomial can be written as
ePq�1ðnÞ ¼
Xq

l¼1

Yq

m¼1;m–l

n� nl

nl � nm

 !
F 0v ;l ð29Þ
where ePq�1ðnÞ is a polynomial interpolating through the grid stencil. Differentiating Eq. (29) once with respect to n, we have
@F 0v
@n
	 @

ePq�1ðnÞ
@n

¼
Xq

l¼1

Xq

n¼1;n–l

Yq

m¼1;m–l;m–n

n� nm

nl � nm

 !
1

nl � nn

 !
F 0v;l ð30Þ
Substituting n = ni into the equation above and comparing terms with those of Eq. (28), we obtain the coefficients ai,k as
follows
ai;k ¼
Xq

n¼1;n–k

Yq

m¼1;m–k;m–n

ni � nm

nk � nm

 !
1

nk � nn
for k ¼ 1;2; . . . ; q ð31Þ
where ai,k is a function of r defined in Eq. (26). In a shock-fitting calculation, the computational grid changes with the move-
ment of the bow shock. As a result, the value of h is a function of time because of the shock movement. The explicit formulas
of ai,k for the non-uniform-grid algorithm for the discretization of the viscous terms are listed in Tables A1–A3 in Appendix.

During the time advancement in the simulation, the grid metrics in the computational domain bounded by the moving
shock vary from one time step to the next. As a result, the r values used in Tables A1–A6 are not constant. Thus we need to
recalculate the finite-difference coefficients ai,k for all irregular points in each time step. In our simulation, the formulas for
the coefficients in Tables A1–A6 are stored in the computer memory, and their values are computed explicitly when the fi-
nite-difference schemes are implemented in each direction.

3.2.2.2. Finite difference formulas for inviscid flux terms in irregular points. Similar to the local algorithms for the viscous terms
at irregular points, a non-uniform-grid high-order upwind scheme is used to discretize the inviscid fluxes, F0+and F0�, as de-
fined in Eq. (20). For every irregular grid point, there are several possible grid stencils for finite-difference approximation of
the flux derivatives of the same accuracy order. Different choices of stencils for these boundary closure schemes lead to dif-
ferent stability characteristics for the overall algorithm. Since F0+ and F0� have either all positive or all negative eigenvalues,
local grid stencils for finite-difference approximation of the flux derivatives are chosen so that the discretization for the
fluxes are upwind biased, while maintaining high-order accuracy. Therefore, for a given irregular grid point, the stencil
for F0+ may be different from the stencil for F0�. In addition, a grid stencil for these fluxes may or may not include the bound-
ary point.

The non-uniform-grid finite-difference schemes for the inviscid flux terms of positive and negative eigenvalues can be
written as
@F 0þ

@n

� �
i
¼ 1

Dh

Xq

k¼1

bþi;kF 0þk for ni 2 Xn
p where i ¼ 2;3; . . . ; q=2b c þ 1 ð32Þ

@F 0�

@n

� �
i
¼ 1

Dh

Xq

k¼1

b�i;kðrÞF
0�
k for ni 2 Xn

p where i ¼ 2;3; . . . ; q=2b c þ 1 ð33Þ
The stencil contains a total of q grid points as shown in Fig. 5. The subscripts of coefficients bþi;k and b�i;k stand for the kth coef-
ficient for the ith irregular point as defined in Fig. 5. The upwind schemes are represented by different sets of coefficients of
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the two formulas above. Because the upwind bias stencil used for @F 0þ

@n does not include the boundary point, the coefficients bþi;k
is not a function of r defined in Eq. (26). On the other hand, b�i;k is a function of r because the upwind stencil for @F 0�

@n includes
the boundary point. The coefficients for each upwind scheme above can be calculated following the same general formulas
given by Eqs. (30) and (31), and they are listed in Tables A4–A6, in Appendix.

The higher-order non-uniform finite-difference stencils require sufficiently many grid points near the roughness surface.
When the grids are insufficient for local high-order finite-difference stencil, there are two approaches to overcome the prob-
lem. The first approach is to maintain the original number of grids point in the local high-order finite-difference stencil. More
grid points can be clustered or generated near the irregular boundary by either adjusting the coordination transformation, or
refining the grids in the computational domain. The global grids refinement tends to be very computationally expensive to
later simulation. Local grids refinement approach can also be adapted, but extra interpolation procedure has to be imple-
mented for different levels of grids. By generating enough grids points near the irregular interface, the order of accuracy
for cut-cell method is maintained. The second approach is to reduce the number of grids in the local finite-difference stencil,
where corresponding lower order of non-uniform finite-difference method can be applied. By using this treatment, the local
order of accuracy is reduced. If the boundary nearly degenerates, the accuracy of current cut-cell method will not be affected,
provided that the boundary interface can be expressed accurately in a numerical or analytical form.

3.2.3. Boundary points
As shown in Fig. 4, boundary points are the marker points located at the intersection between the roughness surface and

grid lines. The governing equations are not solved at these points. However, flow variables at these points are needed for
finite-difference algorithms of the irregular points near the roughness surface. The solid interface imposes the non-slip
and non-flow-through conditions for flow velocities at the boundary points. Depending on the actual thermal conditions
of the solid surface, either an isothermal or adiabatic wall can be specified. In this paper, only the isothermal wall is consid-
ered. In this case, both the velocities and temperature of the boundary points are specified by the wall boundary conditions.
The local pressure on the solid surface (boundary points) needs to be computed by the local flow conditions near the wall.

There are several approaches to compute the pressure at the boundary points. One approach is to integrate a local wall-
normal momentum equation to obtain the wall pressure. We can also use an approximation assumption of zero pressure
gradients at the wall to determine the pressure there. In a previous paper, Zhong used a fifth-order polynomial extrapolation
to determine the wall pressure [13]. Satisfactory results have been obtained with this approach. We follow the extrapolation
approach of Zhong [13] to determine the pressure at the boundary points.

In computing pressure at the boundary points, the polynomial extrapolation is required to have comparable order of
accuracy as that of the interior schemes in order to maintain the expected global accuracy. To maintain a (p + 1)th order glo-
bal accuracy of the upwind schemes developed in the last sections, it is desirable to have at least pth order of accuracy for the
extrapolation for the boundary points.

Since a boundary point is formed by the intersection of the roughness interface with one of the grid lines, the extrapo-
lation is conducted along the direction of the same grid line. We use the grid line along the n direction as an example.
The methods can be applied to other directions similarly. In two- and three-dimensional cases, there is options of either con-
structing the extrapolation along the direction normal to the solid interface, or doing it along the grid lines. Though either
method can be used in multi-dimensional problems, the latter approach is used in this paper since it is simper in implemen-
tation and more stable for simulations of current tests. In this case, the determination of pressure at the boundary points is a
one-dimensional extrapolation along one of the grid lines. The one-dimensional stencil of Fig. 5, which involves non-uniform
grid spacing h, is used to derive the extrapolation formulas for the pressure at the boundary point. For example, for the case
of four point extrapolation shown in Fig. 5, pressure at the boundary point p(n1) is obtained by a third degree polynomial
interpolating through the following four interior pressures: p(n2), p(n3), p(n4), and p(n5). The grid spacing between neighbor-
ing grid points is a constant value of Dh, with the exception that the distance between the first and second points are h. If
there is a dropped point in the stencil, the dropped point is not used in the extrapolation calculations.

For two-dimensional problems, the high-order extrapolation along the norg direction is employed to extrapolate pressure
from the interior domain into the boundary. A total of p grid points in the direction associated with the boundary point are
chosen to be included in the extrapolation stencil. Again, dropped points are not included in the extrapolation stencil. This
procedure can prevent the small cell problem of producing numerical instability near the solid boundary.

3.2.4. Dropped points
In this paper, in order to avoid the small cell problem, a grid point is designated as a dropped point if its distance from a

neighboring boundary point along a grid line is smaller than a pre-determined value H. The dropped point, which is asso-
ciated with a grid direction, is removed in the finite-difference grid stencil along the grid line for the irregular points near the
boundary. On the other hand, a grid point may become a dropped point in one direction, but remain a regular or irregular
point in another. For example, point P1 in Fig. 6 is a dropped point in the n direction, but a regular point in the g direction. In
this case, the flow variables at point P1 are not used in finite difference formulas for derivatives in the n direction. However,
the flow variables at the same grid point are needed for finite difference formulas for derivatives in the g direction. The flow
variables at this dropped point P1 are obtained by the interpolation of a stencil along the n direction.

For a grid point which is a regular or irregular point in one direction, but a dropped point in another, finite difference
schemes along the former direction may include this point in its stencil. As shown in Fig. 6 for the case of p = 3, the
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finite-difference stencil for an irregular point Q located at (ni,gj) contains five points in the g direction, which are in set
XQ = {(ni,gj+2), (ni,gj+1), (ni,gj), (ni,gj�1), (ni,gj�2)}. There are two dropped points along the n direction in this set of stencil
XQ: point P1 at (ni,gj�1) and point P2 at (ni,gj�2). If the points P1 and P2 are removed from the stencil used in the calculations
of flux terms @F 0=@g and @F 0v=@g in Q, the stencil set XQ needs to be shifted two grids down to include (ni,gj�3) and (ni,gj�4) to
maintain the accuracy. In this case, the resulting stencil for Q may contain a significantly large interval h compared with the
normal grid spacing Dh, which may lead to a deterioration of accuracy of the method. Therefore, we maintain the original
grid stencil XQ, which includes points P1 and P2, along the g direction for point Q. We calculate the flow variables of these
two dropped points by interpolation along the n direction.

For the case of p = 3 for point P1, a third-order polynomial interpolation along the n direction is employed to compute the
flow variables at this point. The interpolation is carried out along the n direction, which is along the direction where the point
is dropped. For p = 3 as shown in Fig. 6, the interpolation stencil for point P1 is set XP = {(ni�1,gj�1), (ni�2,gj�1),B}, where B
represents the boundary point. For higher order method, the order of interpolation needs to be increased accordingly. For
p = 4, a fourth order interpolation should be used. For a general case of pth order methods at the boundary, a total of
p � 1 adjacent grid points and exactly one boundary point along the n direction are chosen as the interpolation stencil.
The interpolant can be written as
eUðnp1
Þ ¼

Xp

n¼1

Yp

l¼1;l–n

np1
� nl

nn � nl

 !
Un ð34Þ
where np1
is the n coordinate of dropped point, {Ui, i = 1, . . . ,p} is conservative flow variables at the grid points of the inter-

polation stencil.
Similar interpolation procedures can also be carried out if a point is designated as a dropped point in the g direction, but is

an irregular or regular point in the n direction. If a grid point is designated as a dropped point in both the n and g directions,
there is no need to do interpolations because this point is removed from the calculations of both directions.

4. Numerical results

4.1. One-dimensional boundary value problem in an irregular domain

As a first test case of our new high-order cut-cell method, the following one-dimensional boundary value problem in an
irregular domain is considered:
Txx ¼ f ; x 2 ½0;Cd
 ð35Þ
where
f ¼ b sinðaxÞ
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Eq. (35) is defined in an irregular domain X = [0,Cd] and Dirichlet boundary conditions are imposed as: T(0) = 0, T(Cd) = 1,
where Cd is a constant smaller than 1.0. A set of uniform N grid points are used to cover the regular computational domain
X0 = [0,1]. As a result, the right boundary of domain X is not located at one of the regular grid points. The computational
accuracy of our cut-cell method is tested in this problem with the irregular grid points. The specific parameters used in
our computational tests are:
Fig. 7.
point, w
a ¼ 7
ffiffiffi
3
p

p

b ¼ �147p2

Cd ¼
ffiffiffi
3
p

=2

8>><>>:

The exact solution can be written as,
Te ¼ sin 7
ffiffiffi
3
p

px
� �

ð36Þ
A set of uniform N grid points shown in Fig. 7 are generated to cover the regular computational domain of X0 = [0,1] to test
the order of accuracy of the cut-cell method. The grid size is Dh = 1/N with the grid nodes xi for located at their center. For a
given value of Cd, the boundary point is located at x = Cd, the number of grid points which are located on the left side of the
boundary point is n. There is a dropped point immediately on the left of the boundary point if the distance between them is
less than a critical value of HDh. In this case, we need to compute Ti for i = 1, . . . , (n � 1). If we set the order of accuracy of the
method to be fourth-order for regular points and third-order for irregular points near the boundary, the classification of the
grid points is:
i ¼ 1; . . . ; ðn� 3Þ regular points
i ¼ n� 2;n� 1 irregular points

	
ð37Þ
The grid spacing between the boundary point and the rightmost irregular point at i = n � 1 is
h ¼ Cd � ðn� 1ÞDh ð38Þ
And the parameter r used in the non-uniform-grid algorithms can be calculated by
r ¼ h
Dh

ð39Þ
The solution to Eq. (35) is computed at the grid nodes and is written as
Ti ¼ TðxiÞ ði ¼ 1; . . . ;n� 1Þ ð40Þ
For regular points, a fourth-order discretization is considered, which can be written in the form,
ðTxÞi ¼
5Ti�2 � 40Ti�1 þ 40Tiþ1 � 5Tiþ2

60Dh
ði ¼ 2; . . . ; n� 3Þ

ðTxÞi¼1 ¼
�3T0 � 10T1 þ 16T2 � 6T3 þ T4

12Dh

ð41Þ
To consistent with our method for the Navier–Stokes equations, the second derivative (Txx)i is obtained by applying the first-
derivative formulas above twice.

For the irregular points, we let grid stencil be q = 5 and use a third-order construction described in Section 3.2 for the two
irregular points. To prevent potential deterioration of accuracy for the high-order finite-difference method in the surround-
ing points, the first irregular point may be defined as a dropped point depending on its distance from the boundary point.
After the irregular points and grid stencil have been identified, fourth-order non-uniform-grid finite-difference schemes
are used for the irregular points, i.e.,
o
θΔh

σ = θ/Δh x = Cδ

⊗
<Θ• • • ••

i=ni=1 i=n-1i=n-2i=2i=0
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Computational grid used for the 1-D test case with p = 3, q = 5 and Xn
3 ¼ fnn�2; nn�1g; h is the non-uniform grid spacing after removing a dropped

here Dh is the normal grid spacing, � represents the dropped point, s represents the boundary point, and � represents irregular and regular points.



Table 1
Numeri

N

20
40
80
160
320
640
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TI
x

� �
n�2
¼ a3;5Tn�4 þ a3:4Tn�3 þ a3;3TI

n�2 þ a3;2TI
n�1 þ a3;1TB

Dh
ð42Þ

TI
x

� �
n�1
¼ a2;4Tn�3 þ a2;3TI

n�2 þ a2;2TI
n�1 þ a2;1TB

Dh
ð43Þ
where TI is the irregular point, TB is the boundary point. The coefficients ai,j, which are function of r, can be found in Table A2.
The finite-difference non-uniform-grid schemes given by Eqs. (41)–(43) results in a system of linear equations for Ti with

a sparse coefficient matrix. A fast iteration method or a direct Gaussian Elimination method can be employed to obtain the
numerical solution of this one dimensional equation.

Fig. 8 compares the exact solution and the solution of the fourth-order cut-cell method for the case of N = 320. A good
agreement is achieved between the two sets of solutions. Table 1 gives the computational errors, in L1 and L2 norms, of
the numerical solutions with different sets of grids. To evaluate the computational order of accuracy of the method using
the grid refinement approach, numerical results for two sets of grids with N and N/2 are compared. When the number of
grids is increased by a factor of 2, the errors are expected to decrease by a factor of 16 for a fourth-order method. An error
ratio is defined as
Ratio ¼ kEN=2k1
kENk1

ð44Þ
where the infinite norm is used for error calculations. The order of accuracy can be then calculated as
p ¼ lnðkEN=2k1=kENk1Þ
lnð2Þ ð45Þ
Because we use a locally third-order (q = 5) stencil for the irregular point at i = n � 1 as stated in Eq. (43), the order of overall
accuracy is below 4 under L1 norm. But Table 1 shows that the global order of accuracy based on the L2 norm does approach
4 for the current cut-cell method.

In order to evaluate the effects of boundary closure schemes for the irregular points, we increase the order of the schemes
for the irregular points to fourth order, while the fourth-order schemes for the regular points remain the same. The results
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Fig. 8. Comparison of numerical solution T(x) computed by the fourth-order cut-cell method and the exact solution Te(x) (N = 320).

cal errors of the fourth-order cut-cell method for computing the one-dimensional boundary value problem with an irregular domain.

H kENk1 Ratio p kENk2 Ratio p

0.25 1.521(0) 8.808(�1)
0.25 6.001(�2) 25.4 4.66 1.720(�2) 51.2 5.67
0.25 5.166(�3) 11.6 3.53 1.136(�3) 15.1 3.92
0.25 4.753(�4) 10.8 3.43 7.301(�5) 15.5 3.95
0.25 5.400(�5) 8.80 3.13 3.757(�6) 19.4 4.28
0.25 4.644(�6) 11.6 3.53 2.801(�7) 13.4 3.74
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show that the new cut-cell method can achieve uniformly fourth order accuracy in the entire irregular domain. In this case,
the grid stencil is chosen to be q = 6 for computing derivatives for the irregular points. Due to the increase of the order of the
schemes, the classification of the grid points is:
Table 2
Numeri
with an

N

20
40
80
160
320
640
i ¼ 1; . . . ; ðn� 4Þ regular points
i ¼ n� 3;n� 2;n� 1 irregular points

	
ð46Þ
The fourth-order schemes for the three irregular points can be written as
TI
x

� �
n�3
¼ a4;6Tn�5 þ a4;5Tn�4 þ a4;4TI

n�3 þ a4;3TI
n�2 þ a4;2TI

n�1 þ a4;1TB

Dh
ð47Þ

TI
x

� �
n�2
¼ a3;5Tn�4 þ a3;4TI

n�3 þ a3;3TI
n�2 þ a3;2TI

n�1 þ a3;1TB

Dh
ð48Þ

TI
x

� �
n�1
¼ a2;5Tn�4 þ a2;4TI

n�3 þ a2;3TI
n�2 þ a2;2TI

n�1 þ a2;1TB

Dh
ð49Þ
where TI represents the irregular points and TB the boundary point. The corresponding coefficients ai,j can be found in Table
A3.

Table 2 shows the numerical errors and order of accuracy, based on both the L1 and L2 norms, for the uniform fourth-
order cut-cell method. Compared with the results of the local third-order boundary closure schemes listed in Table 1, the
numerical errors are reduced by an half by using the current fourth-order boundary closure. Table 2 also shows that as
the number of grid points N increases, the computational order of accuracy approaches the expected value of 4 in both
L1 and L2 norms. These results validate our cut-cell method in the sense that it can achieve uniformly high-order accuracy
for problems with irregular domains.

In our cut-cell method, the critical value H is used to decide whether a grid point can be classified as a dropped point or
not. This is a necessary measure in order to avoid the small cell problem in a cut-cell scheme. The best value of H may de-
pend on the specific problem. Generally speaking, extra computational errors may be introduced by the boundary scheme
when H exceeds 1. On the other hand, the time step is restricted by the small H for explicit temporal discretization. In order
to release the time step restriction and minimize the computational errors of the boundary numerical scheme, the suggested
range of this parameter is H 2 [0.5,1].

In order to investigate the effect of the value of H on the accuracy of this test case, several cases with different H values,
ranging from 0.25 to 1.5, are computationally tested. The results are listed in Table 3. When the ratio is reduced below 0.25,
none of points in boundary stencil is classified as dropped point, thus all of the computational results are the identical. As
shown in Table 3, the computational error kENk1 (the accuracy of the problem) always decreases as the H decreases. Table 3
also shows that p is close to 4 for these cases. With H = 0.5, the computational order of accuracy for our cut-cell method is
the highest among all the test cases computed from grids sets N = 80 and N = 160. But the small differences of the actual
value of p do not indicate the level of accuracy among these cases. The bottom line is that we need to pick a reasonable value
of H to avoid small cell problem and Table 3 shows that the accuracy is approximately maintained.
cal errors of the fourth-order cut-cell method with fourth-order boundary closure schemes for computing the one-dimensional boundary value problem
irregular domain.

H kENk1 Ratio p kENk2 Ratio p

0.5 1.451(0) 8.709(�1)
0.5 3.001(�2) 48.4 5.59 1.691(�2) 45.6 5.51
0.5 1.976(�3) 15.2 3.92 1.036(�3) 16.3 4.02
0.5 1.112(�4) 17.8 4.15 6.231(�5) 15.3 3.94
0.5 9.051(�6) 15.6 3.97 3.684(�6) 19.6 4.23
0.5 6.160(�7) 14.6 3.87 2.372(�7) 15.6 3.96

Table 3
Computational order of accuracy for the fourth-order cut-cell method with fourth-order boundary closure scheme with different
values of H.

H 80 Grids kENk1 160 Grids kENk1 Ratio p

2.0 2.201(�3) 1.947(�4) 11.3 3.50
1.0 1.976(�3) 1.419(�4) 13.9 3.79
0.6 1.976(�3) 1.419(�4) 13.9 3.79
0.5 1.976(�3) 1.112(�4) 17.8 4.15
0.25 1.376(�3) 1.112(�4) 12.3 3.62
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4.2. One-dimensional hyperbolic equation in an irregular domain

As the second test case of our new high-order cut-cell method, we consider one-dimensional hyperbolic equation:
@u
@t
þ c

@u
@x
¼ 0; x 2 ½0; Cd
 ð50Þ
Equation is defined in an irregular domain X = [0,Cd] with one side boundary condition imposed as:
uðCd; tÞ ¼ sin
xpðct � CdÞ

c

	 

; t P 0
where Cd is a constant smaller than 1.0. The set of uniform N grid points are used to cover the regular computational domain
X0 = [0,1] as in Section 4.1. The specific parameters used in our computational test are:
c ¼ �1:0
x ¼ 5:0
Cd ¼

ffiffiffi
3
p

=2

8><>:

The exact solution can be written as,
ueðx; tÞ ¼ sinf5pðt þ xÞg; t P 0; x 2 ½0;
ffiffiffi
3
p

=2
 ð51Þ
The stability of explicit finite discretization of equation in irregular domain is restricted by the small grids spacing h in Fig. 7,
e.g., in this one-dimensional case, the length of time step of explicit schemes is restricted by O{min(Dh,h)}. Thus the explicit
discretization may be computationally expensive if the non-uniform grid spaceing h is too small. To prevent potential strin-
gent time step restriction, a second order Crank–Nicholson method is used for temporal discretization. Crank–Nicholson is
unconditional stable and simple in implementation. We tested our cut cell method up to fourth-order accuracy in previous
boundary value problem. For hyperbolic equation, to achieve uniformly fourth-order accuracy in both temporal and spatial
approximation, the time step Dt is chosen such that
Dt ¼ cðDhÞ2 ð52Þ
A set of uniform M grids is generated for temporal discretization with spacing Dt. The grids generation and definition in spa-
tial is the same as those in Section 4.1. The Crank–Nicholson scheme can be written as:
ujþ1
i � uj

i

Dt
¼ 1

2
ðuxÞjþ1

i þ ðuxÞji
n o

; i ¼ 1; . . . ;n� 1; j ¼ 1; . . . ;m� 1 ð53Þ
where ðuxÞji represent the spatial approximation of first order derivatives of u at time tj and grids i.
The third- and fourth-order cut-cell spatial discretization for ðuxÞji as in Eqs. (41)–(43) and Eqs. (47)–(49) can be applied

into Eq. (53). The numerical value at boundary i = 0 is computed by using fourth-order one-side finite-difference scheme as,
ðuxÞ0 ¼
4u1 � 6u2 þ 4u3 þ u4

Dh
ð54Þ
At each time tj the implicit numerical solutions are obtained by using iteration method to solve the linear system.
Fig. 9 compares the exact solution and the solution by using the uniform fourth-order cut-cell method in Eqs. (47)–(49)

and Crank–Nicholson method with grids N = 320 at t = 1.0 (s). A good agreement is achieved between the two sets of solu-
tions. Table 4 gives the computational errors, in L1 and L2 norms. As the number of grid points N increases, fourth-order
accuracy is obtained uniformly. These results validate our cut-cell method in the sense that it can achieve uniformly
high-order accuracy for hyperbolic equation with irregular domains.

4.3. Two-dimensional elliptic equation in an irregular domain

The third test case for the current high-order two-dimensional cut-cell method is the same case used by Leveque and Li
[36] to test their immersed interface method. Specifically, it is an elliptic equation in an irregular domain given by
uxx þ uyy ¼
Z

C
2dðx� XðsÞÞdðy� YðsÞÞds ð55Þ
where the interface C is a circle defined by x2 + y2 = 1/4. The computational domain is (x,y) 2 [�1,1]2 as shown in Fig. 9. The
Dirichlet boundary condition is specified along the boundary with the exact solution:
uðx; yÞ ¼
1 if r 6 1=2
1þ logð2rÞ if r > 1=2

	
ð56Þ
The uniform Cartesian grids of N � N grid points shown in Fig. 10 are used for the problem. Boundary points are created by
the intersection of the gridlines with the interface. The boundary points and irregular points in cut-cell grids are defined in
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Fig. 9. Comparison of numerical solution U(x) computed by the fourth-order cut-cell method and the exact solution Ue(x) (N = 320) at t = 1.0 (s).

Table 4
Numerical errors of the fourth-order cut-cell method with fourth-order boundary closure schemes for computing the one-dimensional hyperbolic equation
with an irregular domain at t = 0.005 (s).

N H kENk1 Ratio p kENk2 Ratio p

20 0.5 1.890(0) 1.209(0)
40 0.5 5.887(�2) 32.1 5.00 3.311(�1) 36.5 5.51
80 0.5 4.912(�3) 12.0 3.58 2.212(�3) 15.0 4.02
160 0.5 4.012(�4) 12.2 3.61 1.456(�4) 15.2 3.93
320 0.5 2.902(�5) 13.8 3.80 8.001(�6) 18.2 4.19
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Fig. 10. Two-dimensional computational domain and grid for the current cut-cell method.
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Section 3. A critical distance H is used as a criterion for the determination of dropping points. Consequently, all four types of
grid points, which are regular, irregular, dropped and boundary points, are defined for the entire computational domain.

For the regular points, we extend the fourth-order schemes given by Eq. (41) for the one-dimensional case to the deriv-
atives along the x and y directions. For example, for the derivative in the x direction, we have:
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ðuxÞi;j ¼
5ui�2;j � 40ui�1;j þ 40Tuiþ1;j � 5uiþ2;j

60Dh
ðfor regular points inside the domainÞ

ðuxÞi¼1 ¼
�3u0;j � 10u1;j þ 16u2;j � 6u3;j þ u4;j

12Dh

ðuxÞi¼N�1 ¼ �
�3uN;j � 10uN�1;j þ 16uN�2;j � 6uN�3;j þ uN�4;j

12Dh

ð57Þ
Similar formulas can be obtained for the derivatives in the y direction.
For irregular points, we extend the non-uniform-grid finite difference schemes for the one-dimensional problem to the

current two-dimensional problem in a dimension by dimension manner. For the case of third-order schemes for the irregular
points, the formulas of Eqs. (42) and (43) are extended to derivatives in the x and y directions, respectively. The treatments
for the dropped points and the boundary points have been described in Section 3. In order to obtain fourth-order global accu-
racy of method, we use a fourth-order polynomial interpolation for the valuables ui,j of the dropped points.

In this paper, we have tested the following two versions of the cut-cell methods with different orders of accuracy for the
boundary closure schemes for the irregular points, while both versions use the same fourth-order schemes for the regular
points:

� Version 1: Second-order cut-cell boundary closure schemes with coefficients given by Table A1. Table A1 are used for the
irregular points. This version is expected to be globally third-order accurate.
� Version 2: Third-order cut-cell s boundary closure schemes with coefficients given by Table A2. Table A2 are used for the

irregular points. This version is expected to be globally fourth-order accurate.

Fig. 11 compares the numerical solution computed by Version 2 of the fourth-order cut-cell method for the two-dimen-
sional example and the exact solution for the case of 80 � 80 grids. The value of H is 1.0 for this case. This figure shows a very
good agreement between the exact and numerical solutions. There is no spurious oscillation for the numerical solutions in
the region adjacent to the interface.

Tables 5 and 6 show the computational errors, in L1 and L2 norms respectively, with four different grid sets. Table 6 shows
that solutions of Version 2 of the cut-cell method approach third and fourth orders in L2 norm as the values of N increase.
This is consistent with the global fourth-order accuracy of the scheme. As expected, Table 5 shows that the orders in infinity
norm are lower than those of the second norm. Overall, the fourth-order cut-cell method with third-order boundary closure
schemes produces a fourth-order global accuracy in L2 norm for the solutions to the two-dimensional problem.
4.4. Two-dimensional hyperbolic equation in an irregular domain

The fourth case for testing the current high-order cut-cell method is the two-dimensional convection equation:
@u
@t
þ c1

@u
@x
þ c2

@u
@y
¼ 0 for x; y 2 ½�1;1
2 \Xþ ð58Þ
where the domain X+ is defined as X+ = {x,y: (x � 1)2 + (y � 1)2
6 2} as shown in Fig. 12. The specific parameters used in our

computation are:
c ¼ 1:0
x ¼ 5:0

	

The time relevant boundary condition is specified along the interface C = {x,y: (x � 1)2 + (y � 1)2 = 2} within the domain. The
exact solution is:
uðx; y; tÞ ¼
ffiffiffi
2
p

2
sinf5ðx� tÞg þ

ffiffiffi
2
p

2
sinf5ðy� tÞg for x; y 2 ½�1;1
2 \Xþ ð59Þ
Uniform M grid points are generated for temporal discretization with spacing Dt, and N � N Cartesian grid points are gen-
erated for spatial discretization with spacing Dh in this irregular domain. The Crank–Nicholson scheme in Eq. (53) is used for
temporal approximation. Dt is calculated as in Eq. (52).

Similar to one-dimensional hyperbolic problem in Section 4.2, the high-order two-dimensional cut-cell discretization in
Section 4.3 for ðuxÞji and ðuyÞji can be applied to discretize the spatial derivatives. The outlet boundary condition is obtained by
using one-side finite difference scheme as in Eq. (52).

Fig. 12(b) shows numerical solution computed by Version 2 of the fourth-order cut-cell method in Section 4.3 and Crank–
Nicholson method. Table 7 shows the computational errors, in L1 and L2 norms respectively, with four different grid sets. The
computational result demonstrates that current high-order cut-cell method can obtain fourth-order accuracy for two-
dimensional hyperbolic equation.
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Fig. 11. Comparison of the solution, u(x,y), computed by Version 2 of the fourth-order cut-cell method (O(h4)) for the two-dimensional example and the
exact (ue) (grid: 80 � 80): (a) and (b) are contours of the solution, (c) is distribution along the x direction.

Table 5
Computational errors in L1 norm of the two versions of the cut-cell methods (O(h3) and O(h4)) for the two-dimensional test case of Leveque and Li [36].

N Cut-cell method 1 Cut-cell method 2

H kENk1 Ratio p H kENk1 Ratio p

20 0.5 1.688(�3) 1.0 7.075(�4)
40 0.5 1.528(�4) 11.0 3.46 1.0 6.285(�5) 11.3 3.50
80 0.5 1.714(�5) 8.92 3.16 1.0 7.295(�6) 8.61 3.10
160 0.5 2.217(�6) 7.73 2.95 1.0 6.337(�7) 11.5 3.53
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4.5. Two-dimensional hypersonic viscous flow over a flat plat with surface roughness

Having tested the accuracy of the current high-order cut-cell method for linear model equations, the new method is used
to compute hypersonic viscous flow over a flat plate with an isolated surface roughness element (Fig. 2). Both steady and
unsteady flows are considered. The freestream flow conditions are the same as those used in Maslov’s experiment [51] as
follows,



Table 6
Computational errors in L2 norm of the two versions of the cut-cell methods (O(h3) and O(h4)) for the two-dimensional test case of Leveque and Li [36].

N Cut-cell method 1 Cut-cell method 2

H kENk2 Ratio p H kENk2 Ratio p

20 0.5 4.791(�4) 1.0 1.967(�4)
40 0.5 4.040(�5) 11.9 3.56 1.0 1.437(�5) 13.7 3.77
80 0.5 2.919(�6) 9.54 3.25 1.0 9.049(�7) 15.9 3.99
160 0.5 2.945(�7) 9.91 3.30 1.0 5.773(�8) 15.7 3.97
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Fig. 12. (a) Two-dimensional computational domain and grids for the current cut-cell method, (b) computational solution, u(x,y), computed by fourth-
order cut-cell method (O(h4)) for the two-dimensional unsteady (grid: 80 � 80, t = 1 s).

Table 7
Computational errors in L2 norm of the two versions of the cut-cell methods (O(h3) and O(h4)) for the two-dimensional convection equation.

N Cut-cell method 1 Cut-cell method 2

H kENk2 Ratio p H kENk2 Ratio p

20 0.5 7.213(�4) 1.0 2.453(�4)
40 0.5 4.127(�5) 17.5 4.13 1.0 1.422(�5) 17.3 4.11
80 0.5 2.831(�6) 14.1 3.82 1.0 8.153(�7) 16.9 4.07
160 0.5 2.808(�7) 9.99 3.33 1.0 5.411(�8) 15.1 3.91
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Pr ¼ 0:72; R1 ¼ q1 � u1=l1 ¼ 1:32� 106=m
M1 ¼ 5:92; T1 ¼ 48:69 K; P1 ¼ 742:76 Pa

(
ð60Þ
where M1, T1, P1, Pr, R1 are Mach number, temperature, pressure, Prantle number and unit Reynolds number, respectively.
The flat plate is assumed to be isothermal with a constant temperature of Tw = 350.0 K. The total length of the flat plate is
about 1.69 m.

The steady mean flow solutions are calculated by using the fifth-order shock-fitting method discussed in Section 3. But in
the leading edge region of the flat plate, there is a singularity at the tip of the plate and the high-order shock fitting method
cannot be used there. Thus a second-order TVD shock-capturing method is employed to calculate a small local flow field
around the tip of the flat plate. The computational domain for the TVD calculations starts at x = �0.006 m and ends at a very
short distance downstream of the leading edge at x = 0.003 m. A total 241 � 121 grid points are used. A TVD scheme, which
follows that used by Lee et al. [52], is applied to Eq. (12). The semi-discrete system of ordinary differential equations are then
solved by using a fourth-order Runge–Kutta method.

Having obtained the steady state solutions at the leading edge, we then use the solution of the TVD scheme as the inlet
condition to start the subsequent shock-fitting calculations. The computational domain for the high-order shock-fitting
methods starts at x = 0.003 m and ends at x = 1.68784 m. In actual simulations, the computational domain is divided into
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30 zones, with total of 5936 grid points in the streamwise direction and 121 points in the wall-normal direction. As men-
tioned above, the second zone uses the results of the first zone of the second-order TVD solution as the inlet condition. A
later zone uses the interpolation of its former zone’s data as the inlet condition.

In this section, unless stated otherwise, most flow variables are presented as dimensionless ones. The main exception is
that the x and y coordinates are presented in dimensional form so that the simulational results can be easily related to the
experimental setup. For other variables, we nondimensionalize the flow velocities by the freestream velocity u1, density by
q1, pressure by q1(u1)2, and temperature by T1.

4.5.1. Steady flow solution without surface roughness
The solutions for the steady viscous flow over the flat plate with no surface roughness are first obtained. Fig. 13 shows the

streamwise velocity and temperature profiles along the wall-normal direction at x = 0.1676 m near the wall. The current
numerical solutions obtained by the fifth-order shock-fitting scheme are compared with the self-similar boundary layer
solution. In order to compare with the self-similar solution of the boundary layer, the y coordinate is nondimensionalized
by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xl1=q1u1

p
. Fig. 13 illustrates that the results of the current numerical simulation agree very well with the theoretical

solutions near the wall. The second-order TVD scheme is accurate enough to be used as the inlet condition of the fifth-order
shock-fitting method downstream of the leading edge. But in region at x = 0.1676 m near the bow shock, the two solutions
are different since the self-similar solution does not consider the shock effect. For boundary-layer instability simulation, the
region near the wall is the most important. However, the shock is also important in receptivity problems where the insta-
bility waves are excited in the freestream, and enter the boundary layer via the bow shock. In this case, it is necessary to
consider the bow shock and its interaction with wave fields.

4.5.2. Steady flow solution with an isolated surface roughness
An isolated roughness element of smooth shape is placed on the surface of the flat plate at x = 0.185 m downstream. The

shape of the surface roughness is chosen to be a two-dimensional bump, governed by the following elliptic equation,
Fig. 13.
wall-no
ðx� xcÞ2

a2 þ y2

b2 ¼ h2 ð61Þ
The computations of this study are performed under the following parameters: a = 2, b = 1, xc = 0.185 m and h = d/2 where
d = 0.00081 m which corresponds to the boundary layer thickness at xc as shown in Fig. 14.

In this paper, a third-order cut-cell method described in Section 3 is used to compute the two-dimensional viscous hyper-
sonic flow over the flat plate with the roughness element. As described in Section 3, a coordinate transformation is employed
to transform the physical domain shown in Fig. 14 into a rectangle computational domain with a set of Cartesian grid. The
optimal transformation formula is determined by the specific physical problem considered. For viscous flow over a flat plate,
it is necessary to cluster more grid points at the bottom wall surface in order to resolve the viscous boundary layer. In this
paper, a two-step mapping procedure is used to obtain better resolution inside the viscous boundary layer.

In the first step of the transformation, the entire physical domain shown in Fig. 14 is transformed into a square domain
defined on [0,1] � [0,1] as an intermediate coordinate space. The transformation relation is defined as:
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X ¼ x�xstrart
L

Y ¼ y
Hðx;yÞ

(
ð62Þ
where (X,Y) is defined under the intermediate coordinate system, L is the streamwise length of the flat plate in physical do-
main, xstart is the streamwise coordinate of starting point of computation in each zone, and the distance along g direction
between the solid wall and bow shock is referred to H.

In the second step of the transformation, the intermediate plane in the (X,Y) space is mapped into the final computational
domain (n,g) in order to cluster more grid points into the viscous boundary layer near the flat plate surface. In the present
study, an exponential stretch function is used to cluster grids in the g direction as follows,
X ¼ n

Y ¼ �
bþ1
b�1ð Þ

ð1�gÞ
�1

bþ1
b�1ð Þ

ð1�gÞ
þ1

b

8<: ð63Þ
where b is the stretching parameter. The value of b = 1.01 is used in this paper. With this b value, about 50% of the total grid
points in the g direction are clustered inside the boundary layer. The combination of the transformations of these two steps
leads to overall transformation given by Eq. (11).

In the computational domain (n,g), the baseline grid is a set of Cartesian grid similar to the schematic shown in Fig. 2(b).
The interaction of the roughness surface with the grid lines creates cut cells, which are treated by the current cut-cell meth-
od. The surface equation (61) of the roughness surface is transformed into the computational domain in order to apply the
cut-cell method. By substituting Eqs. (62) and (63) into the roughness surface equation (61), the analytical equation for
roughness surface in the computational domain can be written as
f ðn;gÞ ¼ ðLnÞ
2

a2 þ
‘HðnLþ xstartÞ2

b2 � h2 ¼ 0

where ‘ ¼
bþ1
b�1

� �ð1�gÞ
� 1

bþ1
b�1

� �ð1�gÞ
þ 1

b

ð64Þ
From Eq. (64), we can calculate the coordinates of the boundary points by computing the coordinates of the intersection be-
tween the roughness surface and the grid lines. For a given value of n along the roughness surface, the Newton iteration
method is employed to solve Eq. (64) for the corresponding value of g on the surface for a boundary point, and vice versa.
Having computed the boundary points, we can identify all irregular and dropped points near the roughness surface. The
remaining grid points are regular points.

After computing all coordinates of the irregular, regular, boundary and dropped points as shown in Fig. 4, the current
high-order cut-cell method is applied to discretize Eq. (12). The bow shock is treated by a high-order shock-fitting method.
The overall accuracy of simulation is determined by the order of scheme used for computing the inviscid and viscous flux
terms. In this paper, the results of a third-order (p = 3) cut-cell method is presented. In simulation, the numerical dissipation
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coefficient a is chosen within range [0.25–6.0]. All the simulations are very stable. Thus the numerical dissipation of the inte-
rior scheme may only have minor influence on the overall stability.

Fig. 15 shows steady flow solutions in the region surrounding the roughness element computed by the third-order cut-
cell method, in both the streamline pattern and the contours of wall normal velocity components. In order to assess the
numerical accuracy of the solutions, steady solutions are obtained by using the following two sets of grids: 241 � 121
and 441 � 241. The grid refinement study for x 2 (0.159,0.195] m is conducted both in x and y directions. The number of
grids points in y direction is doubled to 241 where the value in the inlet is obtained by using sixth-order interpolation from
the coarse grids. The total grid points for the refine-grid case are 441 � 241. The wall-normal velocities computed by fine and
coarse grids are plotted with the same levels of contour line in Fig. 15(b). The good agreement between these two sets of
results suggests that the grid resolution used in the current simulations is high enough for the steady flow simulation. By
integrating the local velocity vectors, the streamline patterns are obtained in Fig. 15(a), which shows that the flow contains
two separation regions as it approaches the roughness. The two separation regions are located immediately before and after
the roughness element, respectively. The flow speed in the separation region after the roughness is slower than that for the
one before the roughness. The streamline patterns also show that the local flow around the roughness does not form parallel
flow patterns used in Linear Stability Theory.

Fig. 16 shows the steady-flow pressure contours for flow over a flat plate with an isolated roughness computed by the
third-order cut-cell method. The roughness element, which centers at xc = 0.185 m, can be seen on the lower surface in
the figure. Because the flow is supersonic behind the bow shock, a family of Mach waves is generated by flow over the rough-
ness. The compression waves are followed by expansion waves when the flow expands around the roughness surface. These
Mach waves are approximately parallel to the bow shock interface in the later zones.

The steady flow solutions demonstrate that, affected by the roughness, hypersonic boundary layer over the flat plate is
modified significantly in the regions both downstream and upstream of the roughness element. The parallel flow assumption
is no longer valid for flow near the roughness. Consequently, normal-mode linear stability analysis may not be accurate in
this flow region. Thus a different boundary layer instability mechanism may be introduced. On the other hand, the effects of
the roughness is most significant in the regions surrounding the roughness. The roughness effects on the steady flow decay if
we move further downstream. Thus the flow is approximately parallel again in the far downstream of the surface roughness.
Linear Stability Theory (LST) can be applied to analyze the flow field which is approximately parallel. Good agreement be-
tween numerical and theoretical solutions can be achieved. More details can be found in [53].

4.5.3. Receptivity of hypersonic flow with surface roughness to wall blowing and suction
In this section, the new third-order cut-cell method is applied to the computation of transient responses of the same

Mach 5.92 boundary layer to forcing waves introduced by a blowing and suction slot located on the plate surface. It is termed
the receptivity problem of the boundary layer to forcing waves [5]. The receptivity problem is critical to the understanding of
physical mechanisms of hypersonic boundary layer transition. The receptivity of the same hypersonic boundary layer to wall
blowing and suction has been studied by Wang and Zhong [54,55] for smooth surface without roughness. In this paper, we
study the additional effects of the isolated surface roughness on the receptivity process by using the current third-order cut-
cell method. The current results are compared with those of [54,55] to study the effects of surface roughness on the recep-
tivity process.
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Fig. 15. Hypersonic flow solutions in the region near the roughness element computed by the third-order cut-cell method: (a) streamline pattern, (b)
contours of wall normal velocity components computed by using two sets of grids (coarse grid: 241 � 121, fine grids: 441 � 241).
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The receptivity study is mainly concerned with the excitation of instability waves, the characteristics of which can be ana-
lyzed by the linear stability theory [56]. The instability theory analyzes the propagation of individual sinusoidal waves in the
streamwise direction inside the boundary layer. These waves are referred as Tollmien–Schlichting (T–S) waves for low speed
flow. The instability waves are vorticity waves, whose amplitudes vary though the boundary layer and die off exponentially
outside the boundary layer. For the case of small perturbations in the flow field, the perturbations of flow variables can be
written in the form of a normal mode, i.e.,
u

v
p

h

8>>><>>>:
9>>>=>>>; ¼

~uðyÞ
~vðyÞ
~pðyÞ
~hðyÞ

8>>><>>>:
9>>>=>>>;eið

R
a dx�xtÞ ð65Þ
where h is the perturbation of temperature. The frequency of the waves is x and the streamwise wave number is represented
by a.

Substituting Eq. (65) into a linearized version of the full Navier–Stokes equation (1), we obtain a system of linearized
equations of the stability theory. These equations are required to satisfy a number of boundary conditions. By imposing
the homogenous physical conditions, the number of solutions of an eigen problem to the linearized equations with specific
value of a and x is constrained. The relation for the instability wave parameter a and x are referred as dispersion relations in
the following form,
x ¼ xðaÞ ð66Þ
Extensive numerical and theoretical research has been conducted to solve the linearized Navier–Stokes equations and many
characteristics regarding the instability waves in hypersonic boundary layers have been discovered [51,56–59]. Mack [56]
identified the unstable modes by using the linear stability theory. He showed that inside a supersonic boundary layer, there
are multiple higher instability modes in addition to the first mode, which is the compressible counterpart of T–S waves in the
incompressible boundary layers. These instability modes in the supersonic boundary layer are termed as first mode, second
mode, third mode, etc. The second mode is also called the Mack mode. For supersonic boundary layer with Mach number
larger than four, the second Mack mode is the most unstable mode, and it plays an important role in hypersonic boundary
layer transition.

To excite the propagation of small disturbances inside the boundary layer, a blowing and suction slot is imposed as peri-
odic-in-time boundary conditions for the perturbations of the mass flux on the wall. The blow-suction slot is located at
x = 0.030 m and spreads over several grids spaces. The perturbations in the blowing and suction slot are governed by the fol-
lowing function:
qv ¼ q0gðlÞ
X15

n¼1

sinðwntÞ ð67Þ
where q0 is an amplitude parameter, wn = nf1 is circular frequency of this multi-frequency perturbation, and g(l) is a non-
dimensional x-direction profile function defined as
gðlÞ ¼ 20:24l5 � 35:4375l4 þ 15:1875l3 ðl < 1Þ
�20:24ð2� lÞ5 þ 35:4375ð2� lÞ4 � 15:1875ð2� lÞ3 ðl P 1Þ

(
ð68Þ
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The variable l is the non-dimensional parameter associated with current coordinate of this blowing and suction,
Fig. 17.
The rou

Fig. 18
differen
lðxÞ ¼ 2ðx� xiÞ
ðxe � xiÞ

ð69Þ
The basic frequency f1 is given by f1 = 50 kHz, and the other 14 different frequencies are imposed as f = 100,150,200, . . . kHz
for n = 2,3,4, . . . A Fast Fourier Transformation (FFT) technique is used to separate the results with different frequencies. This
steady and unsteady flow conditions used in the current simulation are the same as those used in the simulation conducted
by Wang and Zhong [54] for the cases of smooth wall without roughness. Balakumar [40] also investigated the receptivity of
a 2-D roughness to acoustic waves and found the isolated roughness does not contribute much in generating unstable
disturbances.

Fig. 17 shows the contours of pressure perturbations for cases with surface roughness and with combined 15 forcing fre-
quencies. The roughness is located at xc = 0.185 m. The pressure disturbances at flat plate surface are reduced after the insta-
bility waves pass the surface of roughness element.

Fig. 18 compares the amplitudes of surface pressure perturbations for cases with roughness and without roughness at two
different frequencies of f = 100 kHz and f = 150 kHz. For the case without roughness, the wave amplitudes grow exponen-
tially for f = 100 kHz, which is an indication of the second-mode instability in the boundary layer. On the other hand, for
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f = 150 kHz, the amplitudes grow in earlier region due to initial transient of the disturbances excited by the wall blowing and
suction, followed by a delay. There is no second mode instability in higher frequency. By comparing the wave amplitudes
after adding the roughness element, this figure shows that the evolution patterns of disturbance waves are very similar
to those of the non-roughness case. But the magnitudes of disturbances vary significantly around the roughness element.
For the case of frequency f = 100 kHz, the wave amplitudes increase dramatically as they approach the roughness. The wave
magnitudes for the case with roughness remain larger than those of the non-roughness case in further downstream. For the
case of f = 150 kHz, however, the wave amplitudes are reduced significantly when the waves pass the roughness as shown in
Fig. 18(b). Overall, in the local region of the flow field where the roughness effect to the mean flow is significant, the rough-
ness element also has a strong effect on the unstable disturbances. The disturbance amplitudes may or may not be amplified
by the surface roughness, depending on the specific frequency f of the waves. In the further downstream region of the rough-
ness element, the magnitudes of disturbances for all 15 frequencies are lower than those of the non-roughness case. For the
case of 100 kHz frequency, the amplitudes of the second mode are stabilized slightly when a roughness element is added into
the computational domain. Overall, the current third-order cut-cell method is able to obtain highly accurate results for stea-
dy and unsteady viscous hypersonic flow over a flat plate with an isolated surface roughness element.

The current steady flow solution obtained by the current third-order cut-cell method for the hypersonic flow with a
roughness element has also been used to conduct a stability analysis of the boundary layer. Since the accuracy of the stability
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Fig. 19. Wave mode profiles obtained by linear stability analysis at various locations: (a) mode F profile for velocity, (b) mode F profile for pressure, (c)
mode S profile for velocity, (d) mode S profile for pressure. The amplitudes of disturbances are nondimensionlized by their corresponding values on the
surface of flat plate.
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analysis relies on the accuracy of the mean flow solution, the stability results are presented here to demonstrate the accuracy
of the current mean flow solution obtained by the cut-cell method.

A multi-domain spectral collocation (MDSC) method of Malik [60] is used to conduct stability analysis of the steady solu-
tion for the hypersonic flow over the roughness element. More details about the linear stability analysis and methods can be
found in [60].

The dimensionless frequency used for linear stability analysis is defined as
Fig. 20.
rate ai,
F ¼ 2pfm
u2
1

ð70Þ
where F is dimensionless frequency, m is kinematic viscous coefficient. In present simulation, v = 6.05 � 10�5 m2/s,
F = 5.30 � 10�5 for the case of f = 100 kHz and u1 = 827.29 m/s.

In LST analyses of boundary layer flows, the Reynolds number based on the local length scale of boundary layer thickness
d. They are expressed as
R ¼ q1u1d
l1

; d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l1x
q1u1

r
ð71Þ
Hence the relation between the R and the unit Reynolds number R1 is,
R ¼
ffiffiffiffiffiffiffiffiffi
R1x

p
ð72Þ
With the definitions of Reynolds number R and the dimensionless frequency F, the dimensionless circular frequency is ex-
pressed as
x ¼ RF ð73Þ
There are two major wave modes in hypersonic boundary layers: mode F and mode S. Fig. 19 shows wave mode profiles
obtained by linear stability analysis at various locations for both mode F and mode S. The disturbance amplitudes are non-
dimensionlized by the pressure disturbance on the surface of flat plate, e.g. u0ðyÞ ¼ ~uðyÞ=~pð0Þ. In the upstream of roughness at
x = 0.1620 m where the roughness effects on the mean flow are not that significant, mode S and mode F can be identified
clearly. As we move gradually downstream, the profiles of the wave modes vary significantly. After x = 0.1980 m, mode S
and mode F can be identified again by examining their perturbation profiles. The mean flow solution obtained by the cut-
cell method can produce accuracy results for the stability analysis.

In order to investigate the spatial development of unstable mode quantitatively, a local wave number (ar) and a local
growth rate (ai) related to pressure perturbation along the flat plate are calculated,
ar ¼
ddu0

dx
ð74Þ

ai ¼ �
ddjp0j
jp0jdx

ð75Þ
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where d is the length scale of local boundary layer thickness as defined by Eq. (71) jp0j and u0 are pressure perturbation
amplitude and phase angle, respectively. The parameters ar and ai represent the true wave number and growth rate only
if the perturbation is dominated by a single wave mode. Otherwise, the disturbance needs to be decomposed in order to
check properties of a specific mode. The phase velocity is defined as
a ¼ FR
ar

ð76Þ
Quantitative comparisons of amplification rates ai and phase velocities a obtained from DNS and LST are conducted. Fig. 20
show that our numerical results obtained by the cut-cell method agree well with the LST in the region where the parallel
flow assumption is valid. Fig. 20(a) compares the growth rate calculated from stability simulations to that from the LST.
For mode S, the growth rate of stability simulation with or without surface roughness has a good agreement with that of
LST in the region from x = 0.11 to x = 0.13. When x > 0.13, the growth rate of stability simulation is smaller than that of
LST, i.e., mode S obtained by stability simulation becomes more stable than that predicted by LST. The discrepancy between
the growth rates of mode S is mainly caused by the nonparallel flow effect. Fig. 20(b) compares the phase velocity calculated
from stability simulations to that from LST. For mode S, roughness element in the upstream of boundary layer only has minor
influence on the phase velocity distribution.

5. Conclusions

In order to overcome the difficulties in generating body-fitted grids hypersonic flow with arbitrary surface roughness, in
this paper, we have developed a new high-order cut-cell method to discretize flow equations in an irregular domain. A family
of high-order non-uniform-grid finite-difference schemes has been derived to discretize derivatives of the flux terms in the
governing equations at irregular points near the cut cell boundary. A dropped-point approach is used to overcome the small
cell problem and achieve numerical instability. The new high-order cut-cell method has been tested in the computations of
several one and two-dimensional hyperbolic and elliptic equation in irregular domains. The results show that up to fourth-
order accuracy in both L2 and L1 norm can be obtained for the current cut-cell method for both problems. We subsequently
have applied a third-order cut-cell method to the two-dimensional compressible Navier–Stokes equations for simulating
roughness induced receptivity for hypersonic flow over a flat plate with a blowing and suction slot placed near the leading
edge. The surface roughness height is approximately half of the local boundary thickness. By using the uniformly third-order
cut-cell method, small disturbances generated by the blowing and suction slot are well resolved around the roughness ele-
ment. The results obtained by the new third-order cut-cell method are consistent with those of the linear stability analysis
results. In addition, steady solutions of the flow affected by the roughness are well captured by the cut-cell method. The sim-
ulation results suggest that the existence of small surface roughness h ¼ 1

2 d
� �

affects the propagation of instability waves in
the hypersonic boundary layer.
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Appendix A

A.1. Second-order non-uniform-grid finite-difference formulas (p = 2, q = 3)

In this case, the local accuracy for the irregular points is p = 2 with a grid stencil of q = 3. The local grid stencil contains
three points with one irregular point. Hence the set of irregular points is Xn

2 ¼ fn2g. The finite-difference stencil for the irreg-
ular point n2 consists of the following grids: {n1,n2,n3}. The corresponding finite-difference coefficients of Eq. (28) are listed in
Table A1.

For the second-order simulation, the critical ratio is chosen to be H = 0.2, which means a grid point included in the stencil
satisfies r P 0.2.
Table A1
Second-order finite-difference coefficients for
discretization of viscous terms (where r ¼ h

Dh).

a2,1 a2,2 a2,3

�1
rð1þrÞ

1�r
r

r
1þr
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A.2. Third-order non-uniform-grid finite-difference formulas (p = 3, q = 5)

In this case, the local accuracy for the irregular points is p = 3 with a grid stencil of q = 5. The local grid stencil contains five
points with two irregular point. Hence the set of irregular points is Xn

3 ¼ fn2; n3g. The finite-difference stencil for the irregular
point n3 consists of the following grids: {n1,n2,n3,n4,n5}, while that for n2 is {n1,n2,n3,n4}. The corresponding finite-difference
coefficients of Eq. (28) are listed in Table A2.

For the third-order simulation, the critical ratio is chosen to be H = 0.5, which means a grid point included in the stencil
satisfies r P 0.5. As the order increases, it is necessary to use larger value of H in order to maintain numerical stability of the
algorithms.

A.3. Fourth-order non-uniform-grid finite-difference formulas (p = 4, q = 6)

In this case, the local accuracy for the irregular points is p = 4 with a grid stencil of q = 6. The local grid stencil contains six
points with three irregular points. Hence the set of irregular points is Xn

4 ¼ fn2; n3; n4g. The finite-difference stencil for the
irregular point n4 consists of the following grids: {n1,n2,n3,n4,n5}, while that for both n2 and n3 is {n1,n2,n3,n4,n5}.

For the fourth-order simulation, the critical ratio is chosen to be H = 1.0.

A.4. First-order non-uniform-grid finite-difference formulas for inviscid terms (p = 1, q = 3)

In this case, the local accuracy for the irregular points is p = 1 with a grid stencil of q = 3. The local grid stencil contains
three points with one irregular point. Hence the set of irregular points is Xn

2 ¼ fn2g. The finite-difference stencils for the
Table A2
Third-order finite-difference coefficients for discretization of viscous terms.

Coefficients ai,1 ai,2 ai,3 ai,4 ai,5

i = 2 �2
rð1þrÞð2þrÞ � 3r�2

2r
2r

1þr
�r

2ð2þrÞ 0

i = 3 2
rð1þrÞð2þrÞð3þrÞ � 2ðrþ1Þ

6r
1�r

2ð1þrÞ
1þr
2þr

�ð1þrÞ
6ð3þrÞ

Table A3
Fourth-order finite-difference coefficients for discretization of viscous terms.

Coefficients ai,1 ai,2 ai,3 ai,4 ai,5 ai,6

i = 2 �6
rð1þrÞð2þrÞð3þrÞ

�11rþ6
6r

3r
1þr

�3r
2þr

r
3ð3þrÞ 0

i = 3 2
rð1þrÞð2þrÞð3þrÞ

�2ðrþ1Þ
6r

�rþ1
2ð1þrÞ

1þr
2þr

�ð1þrÞ
6ð3þrÞ

0

i = 4 4
rð1þrÞð2þrÞð3þrÞð4þrÞ

�ð2þrÞ
12r

2ð2þrÞ
3ð1þrÞ

�1
2þr

�2ð2þrÞ
3ð3þrÞ

2þr
12ð4þrÞ

Table A4
First-order finite-difference coefficients for
discretization of inviscid terms.

bþ2;1 bþ2 bþ3

0 �1 1

b�1 b�2 b�3

� 1
r

1
r 0

Table A5
Second-order finite-difference coefficients for discretization of inviscid terms.

Coefficients bþi;1 bþi;2 bþi;3 bþi;4 bþi;5

i = 2 0 � 3
2

2 � 1
2

0

i = 3 0 � 1
3 � 1

2
1 � 1

6

b�i;1 b�i;2 b�i;3 b�i;4 b�i;5

i = 2 � 1
rð1þrÞ

1�r
r

r
1þr 0 0

i = 3 1
rð1þrÞð2þrÞ � rþ1

2r
1

1þr
1þr

2ð2þrÞ 0



Table A6
Third-order finite-difference coefficients for discretization of inviscid terms.

Coefficients bþi;1 bþi;2 bþi;3 bþi;4 bþi;5 bþi;6

i = 2 0 � 11
6

3 � 3
2

1
3

0

i = 3 0 � 1
3 � 1

2
1 � 1

6
0

i = 4 0 1
12 � 2

3
0 2

3 � 1
12

b�i;1 b�i;2 b�i;3 b�i;4 b�i;5 b�i;6

i = 2 �2
rð1þrÞð2þrÞ

2�3r
2r

2r
1þr

�r
2ð2þrÞ 0 0

i = 3 1
rð1þrÞð2þrÞ � rþ1

2r
1

1þr
1þr

2ð2þrÞ 0 0

i = 4 �2
rð1þrÞð2þrÞð3þrÞ

rþ2
6r � 2þr

1þr
4þr

2ð2þrÞ
2þr

3ð3þrÞ 0
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irregular point n2 consists of the following grids: {n2,n3} for F 0þ, and {n1,n2} for F
0�. The corresponding finite-difference coef-

ficients of Eqs. (32) and (33) are listed in Table A4.
A.5. Second-order non-uniform-grid finite-difference formulas for inviscid terms (p = 2, q = 5)

In this case, the local accuracy for the irregular points is p = 2 with a grid stencil of q = 5. The local grid stencil contains five
points with two irregular points. Hence the set of irregular points is Xn

3 ¼ fn2; n3g. The finite-difference stencil for the irreg-
ular point n3 consists of the following grids: {n2,n3,n4,n5} for F0+, and {n1,n2,n3,n4} for F0�. The corresponding stencils for n2 are:
{n2,n3,n4} for F0+, and {n1,n2,n3} for F0�. The corresponding finite-difference coefficients of Eqs. (32) and (33) are listed in Table
A5.
A.6. Third-order non-uniform-grid finite-difference formulas for inviscid terms (p = 3, q = 6)

In this case, the local accuracy for the irregular points is p = 3 with a grid stencil of q = 6. The local grid stencil contains six
points with three irregular points. Hence the set of irregular points is Xn

4 ¼ fn2; n3; n4g. The finite-difference stencil for the
irregular point n4 consists of the following grids: {n2,n3,n4,n5,n6} for F0+, and {n1,n2,n3,n4,n5} for F0�. The corresponding stencils
for n3 are {n2,n3,n4,n5} for F0+, and {n1,n2,n3,n4} for F0�. Those for n2 are: {n2,n3,n4,n5} for F0+, and {n1,n2,n3,n4} for F0�. The cor-
responding finite-difference coefficients of Eqs. (32) and (33) are listed in Table A6.
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